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Abstract. The effect of the initial particle distribution on the one-dimensional coagulation
(ε = 1) and annihilation (ε = 2) reaction–diffusion models is studied analytically. With this aim,
an exact expression for the particle number,N(t), given explicitly in terms of the initial particle
distribution, is derived. It is found that if the initial distribution has divergent first moments new
decay laws occur. For the case of fractal distributions of dimensionγ we obtain exactly the
mean relative number of particles,n(t) = 〈N(t)〉/〈N(0)〉. For long times it evolves asn(t) ∼
c1τ
−γ /2+c2τ

−1/2+c3τ
−γ /2−1/2, with τ = 2Dt . The existence of non-fractal initial distributions

that lead to new decays is also discussed. As examples are considered an interparticle probability
distribution of the formp(r) ∼ r−2 which yieldsn(t) ∼ a1τ

−1/2 ln(τ )+a2τ
−1/2 and a family of

distributions of the formp(r) ∼ r−1[ln(r/r0)]−1−α , with α > 0, which yieldsn(t) ∼ [ln(τ )]−α .
These results are tested by Monte Carlo simulations.

0. Introduction

Among the reactions limited by diffusion, the one-dimensional single species models of
coagulationA + A → A, and annihilationA + A → 0, labelled with the indexε = 1, 2
respectively:A + A→ (2− ε)A, have been extensively studied [1–15]. They are indeed
the simplest models of reaction–diffusion and their main properties are well understood
nowadays. While the classical kinetics rate equation predicts the same concentration decay
C(t) ∼ t−1 for all spatial dimensions, the diffusion limitation introduces fluctuations in the
local particle density [2, 3], leading to:

C(t) ≈ 1

ε
(2πDt)−1/2 (1)

for d = 1, ast →∞.
In this work we address a new source of fluctuations that can eventually not only change

the course of the reaction dramatically but also this known long-time asymptotic decay,
namely the effect of high fluctuations in the particle concentration at the beginning of the
reaction. These high fluctuations will be modelled here by means of probability distributions
with divergent moments. We will consider a one-dimensional lattice of unity spacing for
comparisons with simulation results at all times. LetN(t) be the number of particles at time
t and〈N(t)〉 its mean value, obtained over many realizations of the experiment. LetC0 be
the initial particle concentration as measured by〈N(0)〉 divided by the total number of sites
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of the lattice. To obtain result (1) it is implicitly assumed that the existence of a well defined
initial concentrationC0 = 〈N(0)〉/L, whereL is the volume of the system measured by the
number of lattice sites. What happens, however, if theinitial particle distribution: (a) has
a fractal dimension 0< γ < 1, for which the mean interparticle distance,〈r〉, diverges; or
(b) has a finite〈r〉 but with high fluctuations around this mean value, such that its variance
〈[r − 〈r〉]2〉 diverges?

In case (a), we have

〈N(0)〉 ∼ Lγ (2)

so thatC0 would vanish asL−(1−γ ) for an infinitely large lattice. However, in experimental
situations (in the laboratory as well as in computer simulations) one deals with systems of
finite size, for which the problem is well posed by considering thatC0 depends parametrically
on L, with L <∞.

On the other hand, for case (b) there is a well defined (i.e. size-independent) initial
concentration and thus it is to be expected that the long-time asymptotic result for
homogeneous distributions, equation (1), remains unchanged. It will result that this is
in fact the case; however the pure asymptotic regime establishes, at such long times, that it
can hardly be reached in experimental situations and corrections to the pure asymptotic are
necessary in order to describe the population decay along the main course of the reaction.
We will focus on the relative mean number of particles,n(t) ≡ 〈N(t)〉/〈N(0)〉, where the
averages are understood over many realizations of the same experiment. We will find that
in both cases the long-time asymptotics (1) changes into the new form

n(t) ≈ 1

ε


c1τ
−γ /2+ c2τ

−1/2+ c3τ
−γ /2−1/2+ · · · 0< γ < 1

1

2
√
π
τ−1/2 ln(τ )+ 1+ γ ?√

π
τ−1/2+ · · · γ = 1

c2τ
−1/2+ c1τ

−γ /2+ c3τ
−γ /2−1/2 for 1< γ < 2

(3)

whereτ = 2Dt andγ ? is the Euler constant. In equation (3) the leading terms are ordered
from left to right.

There are some experimental situations in which these new decays are relevant. As is
well known, the diffusion–annihilation reaction is formally related to the Ising model by
identifying domain walls with particles [16–18]. Here the distribution of domain sizes can
be of a fractal type for ferromagnetic (-electric) configurations. Therefore it could be of
interest in the study of relaxation to the equilibrium of some substances such as potassium
dihydrogen phosphate, KH2PO4, for which a one-dimensional ferroelectric structure with
fractal aspects of the pentad Cantor set of Hausdorff dimensionγ ∼= 0.756 was recently
reported [19, 20]. Another situation of interest is that of particles building up percolation
clusters by being adsorbed on surfaces, after which they perform recombination reactions.
Recently, in order to obtain information about the adsorption energy distribution on a
catalytic surface, the measurement of the particle number decay along the entire course
of the reaction was proposed [21]. It was found that the kinetics of the reactionA+A→ 0
is strongly influenced by energy correlations in the adsorptive field.

1. The model

The diffusion process will be modelled as a continuous-time random walk (CTRW) on a
d = 1 lattice. The particles step to nearest-neighbour sites chosen with equal probability.
Letψ(t) be the waiting time distribution (WTD). Pure diffusion with diffusivityD, i.e. with



Novel decay laws for the one-dimensional reaction–diffusion model3301

a mean square displacement〈r2(t)〉 = 2dDt , implies an exponentially distributed pausing
time between steps:

ψ(t) = λe−λt ψ̂(u) =
∫ ∞

0
dt e−utψ(t) = λ

λ+ u with λ = 2dD. (4)

This WTD leads exactly to a diffusion equation for the probability of finding a particle at
positionr if initially at r = 0 in the limit of continuum space:∂tP (r, t) = D∂2

r P (r, t).
Let F(r, t) be the probability density for thetime in which a random walker, starting at

r = 0, reaches siter for the first time. For any lattice with translational invariance, it can
easily be obtained in the Laplace representation [23, 24]. It can be written as

F̂ (r, u) = η̂(u)−r with η̂(u) = 1+ (u/λ)+
√

2(u/λ)+ (u/λ)2. (5)

2. An exact solution in terms of the initial distribution

In this section we will obtain an exact expression forn(t) explicitly in terms of theinitial
interparticle distribution function (IPDF),p(r). With this aim we will take advantage of the
CTRW expression (5) in the exact results of Doering and ben-Avraham [5] (for coagulation)
and of Spouge [6, 7] (for coagulation and annihilation) in one dimension. It is possible to
recast their results in such a way that the relative concentration is written as a suitable
average over the initial interparticle distance,r, of the survival probability of asingle pair
of particles:

n(t) = 1−
∫ t

0
dt ′ 〈F2(r, t

′)〉. (6)

HereF2(r, t) is the probability density for the first encounter time,t , of two simultaneously
mobile particles, which were at a distancer apart at timet = 0. In this notation, with
the subscript ‘2’ we would like to remark that this function refers to therelative motion of
two particles. Therefore, as long as one deals with an exponential WTD, it follows from
equation (5) with twice the hopping rate (i.e. 2λ in place ofλ). In the Laplace representation,
this amounts to taking

F̂2(r, u) = F̂ (r, u/2). (7)

In equation (6), the average overr is given by [6]:

〈F2(r, t)〉 =
∫ ∞

0
dr β(r)F2(r, t) (8)

with

β(r) =


p(r) for coagulation

2
∞∑
k=1

(−1)k+1pk(r) for annihilation
(9)

wherep(r) is the IPDF andpk(r) is the distribution for the distance of a typical particle
to its kth neighbouralso at t = 0 (i.e. p1(r) = p(r)). We will consider an initial random
distribution of particles with translational invariance modelled as a renewal process with
IPDFp(r). This means that the distances between next-neighbour particles are independent
random variables with the same probability distribution,p(r) (this is in fact the hypothesis
in solution (6), see [5, 6]). In order to be more explicit, the probability density for the
position,r, of thekth particle,pk(r), satisfies the recurrence relation

pk(r) =
∫ r

0
dr ′ p(r − r ′)pk−1(r

′). (10)
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Then, in the Laplace representation, this density is readily obtained as

p̃k(v) =
∫ ∞

0
dr e−vrpk(r) = [p̃(v)]k. (11)

Inserting (5) into (8) we obtain

〈F̂2(r, u)〉 =
∫ ∞

0
dr β(r)e−r ln η̂(u/2) = β̃(v = ln η̂(u/2)) (12)

with the Laplace representation (variablev) for the space:β̃(v) = ∫∞0 dr e−vrβ(r). From
equation (9) it reads

β̃(v) =
{
p̃(v) for coagulation

2p̃(v)/[1+ p̃(v)] for annihilation.
(13)

Finally, returning to equation (6), the expression for the relative particle number is grasped
as an explicit function of the initial distribution:

n(t) = L−1
u

{
1

u
[1− p̃(v = ln η̂(u/2))]

}
for A+ A→ A (14)

n(t) = L−1
u

{
1

u

1− p̃(v = ln η̂(u/2))

1+ p̃(v = ln η̂(u/2))

}
for A+ A→ 0 (15)

where L−1
u is the inverse Laplace operator acting on the complex variableu, i.e.

L−1
u {f̂ (u)} = f (t).

As an example of the application of this result, let us consider an initial distribution of
one particle per lattice site. In this casep(r) = δr,1, i.e. p̃(v) = e−v and we readily obtain:

n(t) =
{

e−4Dt [I0(4Dt)+ I1(4Dt)] for A+ A→ A

e−4DtI0(4Dt) for A+ A→ 0
(16)

whereIn(x) is the hyperbolic Bessel function. These are known results [4, 6, 8]. In figure 1
we see that there is a perfect agreement with simulations at all times.

3. Fractal initial distributions

In order to have a scaling with the system size of the form of (2) the initial distribution
must be such that the particles build up a fractal pattern. This pattern can be a random or a
deterministic fractal. In the following two sections we will consider both cases respectively.

3.1. Random fractals

We will consider random fractals generated as a renewal process along the line. Letχk(L)

be the probability that exactlyk particles lie inside a segment of sizeL. Then, the mean
initial number of particles,〈N(0)〉, within a segment of lengthL, is

〈N(0)〉 =
∞∑
k=0

kχk(L). (17)

On the other hand, in terms of the probabilityF(r), there are no particles within a distance
r from the previous particle:F(r) = 1−∫ r0 dr ′ p(r ′), the required probabilityχk(L) follows
as

χk(L) =
∫ L

0
dr F (L− r)pk(r). (18)
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Figure 1. Evolution of the particle concentration for coagulation and annihilation, for initially
one particle per site. Numerical simulations (broken curve) and theory, equation (16) (full
curves).N(0) = 30 000, 10 realizations.

In the Laplace representation, using (11), equation (18) becomes

χk(v) = F(v)pk(v) = 1− p(v)
v

p(v)k (19)

and the sum in equation (17) is readily obtained as

〈N(0)〉 = L−1
v

{
p(v)

v(1− p(v))
}
. (20)

Provided the IPDFp(r) has a finite first moment (the mean distance between the nearest-
neighbour particles),〈r〉, the long distance (smallv) expansion of equation (20) yields
〈N(0)〉 ∼ L/〈r〉 and the initial concentration is well defined. On the other hand, a fractal
initial distribution is achieved if the IPDF is proportional to a stable law at long distances,
i.e. p(r) ∼ r−1−γ . Let us consider the following form:

p(r) = θ(r − r0)γ rγ0 r−1−γ (21)

where θ is the Heaviside step function andr0 is the minimal nearest-neighbour particle
distance (for example the lattice parameter).

The mean distance between nearest-neighbour particles, diverges for 0< γ < 1 and
reads as〈r〉 = γ r0/(γ − 1) otherwise. In the first case, equation (21) in (20) leads to

〈N(0)〉 ∼ sin[π(1− γ )]
πγ

Lγ (22)

that is, we obtain a fractal distribution. In figure 2 we show a realization of the particle
distribution along the lattice according to (21) forγ = 0.8. Despite the fact that the
mean interparticle distance is infinite, the fluctuations are also infinite in such a way that
a typical realization results in a non-empty lattice.〈r〉 < ∞ when 1< γ < 2, but r
has infinitely large fluctuations around this mean value. In this case, as a measure of the
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Figure 2. One realization of the initial distribution of particles generated as a fractal renewal
process, equation (21). Each particle is marked with a vertical line. The first 140 000 lattice
sites at different scales are shown. In the uppermost, individual lattice sites can be distinguished.

fluctuations of the initial particle distribution we can consider the second (centred) moment:
〈(r − 〈r〉)2〉 = γ r2

0/[(γ − 1)2(γ − 2)], which becomes finite only forγ > 2.
The Laplace representation of (21) reads as

p̃(v) = e−(r0v) − (r0v)γ 0(1− γ ; r0v). (23)

Bringing this expression into equations (14), (15), studying the smallu (long times) and
small v (large distances) behaviours and using Tauberian theorems [25], we obtain the
asymptotic form:

n(t) = 1

ε
[c1τ

−γ /2+ c2τ
−1/2− c3τ

−1/2−γ /2+ · · ·] (24)

whereτ = λt = 2Dt . The coefficients can be exactly computed (hereafter we taker0 = 1,
such that all distances are given in units of the lattice parameter):

c1 = 0(2− γ )
(1− γ )0(1− γ /2) c2 = γ

(γ − 1)
√
π

and c3 = 5

8

γ0(2− γ )
0(1− γ /2) .

(25)

This result shows a continuous transition aroundγ = 1, but it does not hold forγ = 1.
In particular, for the fractal case (a) 0< γ < 1, the leading term is:

n(t) ∼= c1

ε
τ−γ /2 = 1

ε

0(1− γ )
0(1− γ /2) (2Dt)

−γ /2. (26)

This result reproduces the advanced formt−γ /2 [15, 22] on the anomalous particle number
decay for fractal initial distributions in one dimension. Moreover, for the first time, they
give exactly the proportionality constants.
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Figure 3. Relative particle number decay in numerical simulations of coagulation.N(0) =
10 000, four realizations. Initially, particles form a random fractal with the nearest-neighbour
distance generated according to equation (21) withγ = 0.8. The full curves correspond to the
analytical predictions: (a) the long-time pure asymptotic given by equation (26) and (b) the
exact solution, equation (14), computed after the numerical Laplace transform. The inset shows
the slow convergence of the theoretical expression to its asymptotic.

In figure 3 we show numerical simulations (broken curves) for the coagulation reaction
with particles whose initial positions were generated by means of a renewal process with
IPDF (21), forγ = 0.8.

In figure 4 we show the corresponding comparision for annihilation. It is important to
note that thispure asymptotic decay, equation (26) (curve ‘a’ in the figures), establishes for
times too long to be reached by the simulations. On the other hand, it is enough to take the
first two terms in result (24) to obtain the correct decay along practically the whole course
of the reaction.

In figure 5 we show the evolution of the IPDF as histograms generated from the same
simulations as for figure 3. At variance with the case of homogeneous initial distributions
[5, 12], here we see that the fractal distribution is preserved along the course of the reaction.

As an example of case (b) we have taken 1< γ < 2, such that〈r〉 is finite but 〈r2〉
still diverges. In figures 6 and 7 we show simulation results forγ = 1.2 compared with
our analytical expression (24). Note that now the leading terms are interchanged: the pure
asymptotic is now

n(t) ∼= 1

ε
c2τ
−1/2 = γ

ε(γ − 1)
(2πDt)−1/2 (27)

which again occurs at very long times if 1< γ < 2, i.e. for initial distributions with
infinitely large fluctuations around the mean initial concentration.

We should note that the appearance of decay laws other than the known form (1) is
not a consequence exclusive of fractal distributions. In fact, takingγ = 1 and the same
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Figure 4. Annihilation reaction for a particle distributed initially as a random fractal with
γ = 0.8, fixing the initial number of particlesN(0) = 80 000 and averaging over four
realizations: (a) the leading term, equation (26); (b) taken the two first leading terms of
equation (24); and (c) taken the three first leading terms given in expansion (24).

functionp(r), a similar expansion leads to the result

n(t) ∼= 1

ε

[
τ−1/2

2
√
π

ln(τ )+ 1+ γ ?√
π

τ−1/2+ · · ·
]

(28)

which shows a non-neglectable logarithmic correction to the classical decayτ−1/2, see
figure 8. Hereγ ? = 0.577 215 6649. . . is the Euler or Mascheroni constant.

Still more surprising is another non-fractal distribution which also has divergent integer
moments, recently introduced by Havlin and Weiss [26]:

p(r) ∼ r−1[ln(r/r0)]
−1−α with α > 0 asr →∞. (29)

While for the IPDF proportional to a stable law, equation (21), moments of order less than
γ will be finite, in this case now there are no finite positive moments. The logarithmic
moments of order less thanγ will be finite for the IPDF of equation (29). A similar analysis
shows that the decay turns out to be

n(t) ∼ 1

ε
[ln τ ]−α

at long times.

3.2. Deterministic fractals

As an example of a deterministic fractal structure we have taken a (generalized) Cantor
set of baseb constructed by placing one particle per site, dividing the lattice inb equal
parts (b odd) and removing all particles of the central part. By repeating this procedure
iteratively on each remaining part, the particles build up a pattern of fractal dimension
γ = ln(b − 1)/ ln(b). In order to implement this distribution we have numbered the lattice
sites in baseb (we have consideredb = 3, 5) and assigned no particle to this site if in this
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Figure 5. Histograms for the interparticle distance at the indicated times. They correspond
to the simulations of figure 3. Both axis scales are logarithmic. The full line is the same
in all figures, and shows the theoretical probability density, equation (21), from which the
initial distribution was generated. These data correspond to a single realization in which the
distance between the left-most and the right-most particle was also generated considering periodic
boundary conditions. Note the appearence of finite size effects after a time oft > 105.

representation its lattice-site number contains the character(b−1)/2 (i.e. 1, 2 respectively),
otherwise we assigned a particle to this site. In tables 1 and 2 we show the resulting scaling
of the (initial) number of particles with the system size,L, for different sizes of lattice by
using this algorithm.



3308 P A Alemany

Figure 6. The same as figure 3 but forγ = 1.2: (a) the leading term, equation (27); (b) taken
the two first leading terms and (c) taken the three first leading terms given in equation (24).
Here isN(0) = 50 000, three realizations.

Figure 7. The same as figure 6 (γ = 1.2) for the annihilation reaction. Here isN(0) = 50 000,
three realizations.

In figure 9 we show the simulation results for the coagulation reaction with particles
initially placed on the lattice building up Cantor sets of basesb = 3, 5 generated up to
levels 14, 9 shown in tables 1 and 2 respectively. As a comparison, the case of initially one
particle per site is also shown in the bottom curve. The full lines, as reference, show the
pure asymptoticsn(t) ∼ t−γ /2. Note that this asymptotics establishes after a few steps of the
particles. In this respect, the evolution of the particle number for random and deterministic
fractals are very different, despite the fact that both share the same pure asymptotics.
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Figure 8. Coagulation reaction: same as figure 3 forγ = 1: (a) the leading term,
1

2
√
π
τ−1/2 ln(τ ); (b) taken the two first leading terms shown in equation (28). Here is

N(0) = 50 000, three realizations.

Table 1. Cantor set of baseb = 3 and dimensionγ = ln(2)/ ln(3) = 0.630 929 75. . ..

N(0) L log3(N(0)) log3(L) γ = log3(N(0))/ log3(L)

2 3 0.630 929 75 1 0.630 929 75
4 9 1.261 859 51 2 0.630 929 75
8 27 1.892 789 26 3 0.630 929 75

16 81 2.523 719 01 4 0.630 929 75
32 243 3.154 648 77 5 0.630 929 75
64 729 3.785 578 52 6 0.630 929 75

128 2 187 4.416 508 27 7 0.630 929 75
256 6 561 5.047 438 03 8 0.630 929 75
512 19 683 5.678 367 78 9 0.630 929 75

1 024 59 049 6.309 297 54 10 0.630 929 75
2 048 177 147 6.940 227 29 11 0.630 929 75
4 096 531 441 7.571 157 04 12 0.630 929 75
8 192 1594 323 8.202 086 80 13 0.630 929 75

16 384 4782 969 8.833 016 55 14 0.630 929 75

4. Conclusions

We have found new decay laws which appear as a consequence of a high inhomogeneity
in the initial distribution. Considering the great number of works dedicated to the study of
these reactions, this aspect had not received enough attention [15, 22].

We have considered in detail two types of fractal initial particle distribution. First a
random fractal generated as a renewal process along the line, such that it is completely
specified by the interparticle probability distribution function (IPDF),p(r). Using CTRW
expressions for the first-passage-time density in the method of solution given by Spouge
[6], we have obtained the relative mean number of particles,n(t) = 〈N(t)〉/〈N(0)〉 as an
explicit function ofp(r) (see equations (14), (15)).
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Table 2. Generalized Cantor set of baseb = 5 and dimensionγ = ln(4)/ ln(5) =
0.861 353 12. . ..

N(0) L log5(N(0)) log5(L) γ = log5(N(0))/ log5(L)

4 5 0.861 353 1 0.861 353 116 146
16 25 1.722 706 2 0.861 353 116 146
64 125 2.584 059 3 0.861 353 116 146

256 625 3.445 412 4 0.861 353 116 146
1 024 3 125 4.306 765 5 0.861 353 116 146
4 096 15 625 5.168 118 6 0.861 353 116 146

16 384 78 125 6.029 471 7 0.861 353 116 146
65 536 390 625 6.890 824 8 0.861 353 116 146

262 144 1953 125 7.752 178 9 0.861 353 116 146

Figure 9. Log10–log10 plot of n(t) for the coagulation reaction with particles forming a
deterministic fractal att = 0 (axis are as in previous figures). From the top to the bottom:
for a Cantor set of baseb = 3 (γ = ln(2)/ ln(3) = 0.63), for a Cantor set of baseb = 5
(γ = ln(4)/ ln(5) = 0.86) and (as a reference) for one particle per site. In all cases the broken
curves correspond to simulations (two realizations) and the full lines show the asymptotics:
t−γ /2 for the Cantor sets and equation (1) for one particle per site.

Taking a distribution proportional to a stable law at large distances:p(r) ∼ r−1−γ ;
γ > 0 we found that for long timesn(t) ∼ c1(2Dt)−γ /2+ c2(2Dt)−1/2+ c3(2Dt)−γ /2−1/2,
with the factorsc1, c2, c3 given exactly in equation (25). For 0< γ < 1 (a fractal
distribution) the leading term ist−γ /2 at variance with the characteristic decayt−1/2.
However, even for 1< γ , for which a mean initial concentrationC0 does exist, ifγ < 2 the
fluctuations in the spatial distribution of particles diverges. As a consequence, the expected
asymptotics (1) does not suffice to describe the long-time decay and at least the first two
leading terms:n(t) ∼ c2(2Dt)−1/2+ c1(2Dt)−γ /2 must be considered.

We have also considered particles building up a Cantor set att = 0, of dimension
γ = ln(2)/ ln(3) and a generalized Cantor set of dimensionγ = ln(4)/ ln(5) as examples
of deterministic fractals. We found that the asymptotic decayN(t) ∼ t−γ /2 establishes at
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earlier times, without the large transients found for random fractals.
Finally, we pointed out that the appearance of anomalous decay laws are not a

consequence of exclusively fractal initial distributions, but of the non-existence of first
moments of this distribution. As an example, taking the IPDFp(r) ∼ r−1[ln(r/r0)]−1−α,
α > 0 we obtained the novel decayn(t) ∼ [ln(2Dt)]−α.

We consider that it is important to be aware of these effects, in order to interpret
experimental results, where departures of the known decays could be the sign of an exotic
spatial distribution.
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